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Abstract

In this paper we study simultaneous external and internal stabilization of linear system under input saturation and non-input additive
sustained disturbances. For systems that are asymptotic null controllable with bounded control, it is shown that a nonlinear dynamic
feedback controller can be designed so that the closed-loop states remain bounded for any initial condition and for two classes of sustained
disturbances, and that the equilibrium in the absence of disturbances is globally asymptotically stable.

Key words: Simultaneous stabilization, input saturation, low-and-high gain feedback.

1 Introduction

All physical systems operate under a variety of constraints.
One of the ubiquitous constraints is actuator saturation. In
this paper, we study simultaneous external and internal sta-
bilization of linear systems under actuator saturation and
non-input-additive sustained disturbances. To be precise, we
define the notion of external stability as having bounded
closed-loop states for all initial conditions and internal stabil-
ity as global asymptotic stability of the origin of the closed-
loop system in the absence of disturbances.

The study on stabilization of linear system subject to input
saturation has a long history. It is prudent to first review the
literature with respect to previous results in this area. Fuller
(1969) pioneered in early research on internal stabilization
by showing that a chain of integrators of order greater than
or equal to 3 with input saturation can only be globally
asymptotically stabilized by a nonlinear control law. Son-
tag & Sussmann (1990); Sussmann & Yang (1991); Yang
(1993); Yang et al. (1997) showed that the global asymptotic
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stabilization of linear system subject to input saturation is
possible if and only if the open-loop system is asymptotic
null controllable with bounded input (ANCBC). Moreover,
such a stabilization in general requires nonlinear control law.
These works usher in a research boom over two decades on
internal stabilization of linear system subject to input sat-
uration. Many important results have been reported in the
literature (see Bernstein & Michel, 1995; Saberi & Stoorvo-
gel, 1999; Tarbouriech & Garcia, 1997; Saberi et al., 2000b;
Hu & Lin, 2001; Kapila & Grigoriadis, 2002, and references
therein).

After these achievements in the internal stabilization, re-
searchers have focused on the simultaneous external and in-
ternal stabilization problem. In the literature dealing with
external stability of linear systems subject to input satura-
tion, the types of disturbances studied have been classified as
input-additive and non-input-additive. For the input-additive
case, Hou et al. (1998); Saberi et al. (2000a) and Wang
et al. (2011c) showed that simultaneous internal and Lp

(continuous-time) or p̀ (discrete-time) stabilization with fi-
nite gain for p 2 Œ1; 1� can be achieved by a nonlinear low-
and-high gain state feedback. The design of such a controller
relies heavily on characterizing the solution of algebraic Ric-
cati equation (ARE) (see Megretski, 1996; Lin, 1998). In
a special case of open-loop neutrally stable systems, it has
been shown by Liu et al. (1996), Bao et al. (2000) and Chi-
tour & Lin (2003) that a linear state feedback achieves Lp

and p̀ stabilization with finite gain for p 2 Œ1; 1� while
rendering the origin globally asymptotically stable without
disturbances. On the other hand, Stoorvogel et al. (1999)
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studied the non-input-additive case and found that Lp and
p̀ stabilization with finite gain are impossible, but Lp and
p̀ stabilization without finite gain are always attainable via

a dynamic low-gain feedback. Moreover, for an open-loop
neutrally stable system, it is attainable via a linear static state
feedback (see Shi et al., 2003). Nevertheless, these results
only apply to Lp and p̀ disturbances for p 2 Œ1; 1/ (i.e.,
disturbances whose “energy” vanishes asymptotically), and
not to sustained signals belonging to L1 and `1.

For sustained signals that are non-input-additive, clearly not
all disturbances can be managed appropriately as, for in-
stance, a large constant disturbance aligned with the input
could overpower the saturated control and lead to unbounded
states. In view of this, Stoorvogel et al. (2011) proved that for
disturbances that are exactly matched to the input and have
magnitude smaller than the level of saturation by a known
margin, a nonlinear static state or dynamic measurement
feedback can be constructed to ensure a bounded closed-
loop state. Of particular interest in dealing with sustained
non-input-additive disturbances, is the study on identifying
classes of disturbances for which a controller can be de-
signed to yield bounded closed-loop state trajectories. Work
along this line has been carried out by Wen et al. (2008) and
Wang et al. (2012, 2011b,a). In this body of work, a set of
disturbances has been defined consisting of all continuous-
or discrete-time signals that do not contain large sustained
frequency components corresponding to the system’s eigen-
values on the imaginary axis (continuous-time) or on the unit
circle (discrete-time) of the complex plane. It was shown
in Wang et al. (2012, 2011b) that for continuous-time dou-
ble integrators and chain of integrators this class of distur-
bances can be handled by an appropriately chosen control
law if they are matched with the input. Moreover, the same
control law can also cope with any bounded disturbances
that are misaligned with the input. Later on, Wang et al.
(2011a) showed that for both continuous- and discrete-time
open-loop neutrally stable systems controlled by a properly
chosen linear feedback under saturation, this class of distur-
bances also leaves the closed-loop states bounded for any
initial conditions. However, it was illustrated by an exam-
ple that the disturbances containing large sustained compo-
nents at frequencies corresponding to the open-loop system’s
eigenvalues may lead to unbounded states regardless of the
choice for the controller.

In this paper, based on the construction for a chain of inte-
grator and for neutrally stable systems, we shall extend the
results in Wang et al. (2012, 2011b,a) to general ANCBC
systems which may have non-zero degenerate eigenvalues
on the imaginary axis (continuous-time) or on the unit cir-
cle (discrete-time); in other words, systems that are at most
critically unstable. It will be shown that the same class of
disturbances identified in Wang et al. (2011a) can be tack-
led by a properly designed feedback controller. At the same
time, the resulting closed-loop system in the absence of dis-
turbances is globally asymptotically stable.

The paper is organized as follows: In the preliminaries sec-
tion, we first recall some standard notations. Then we shall

define the system and the problem to be studied in the pa-
per and make several necessary assumptions. Next, a special
Jordan decomposition is introduced which is instrumental
in establishing our results. A special class of disturbances is
introduced in Section 3. After these preparations, we present
the main results of this paper and its proof in Section 4. Fi-
nally, some technical results used in this paper are given in
the appendix.

2 Preliminaries

2.1 Notation

We first recall some standard notations. Cs denotes
closed left half plane (continuous-time) and closed unit
disk (discrete-time). Cb denotes the imaginary axis for
continuous-time system and the unit circle for discrete-
time system. For x 2 Rn, kxk denotes its Euclidean norm
and x0 denotes the transpose of x. For X 2 Rn�m, kXk

denotes its induced 2-norm and X 0 denotes the transpose
of X . For continuous-time (discrete-time) signal y, kyk1

denotes it L1 (`1) norm. L1.ı/ (`1.ı/) represent a set
of continuous-time (discrete-time) signals whose L1 (`1)
norm is less than ı.

2.2 Formulation

Consider the following system

�x D Ax C B�.u/ C Ed; x.0/ D x0; (1)

where x 2 Rn, u 2 Rm and d 2 Rp . �x denotes the deriva-
tive �x D Px for continuous-time systems and the shift op-
erator .�x/.t/ D x.t C 1/ for discrete-time systems. �.�/ is
the standard saturation function, i.e. for s 2 Rm

�.s/ D

2664
sign.s1/ minf1; js1jg

:::

sign.sm/ minf1; jsmjg:

3775
In this paper, we are interested in sustained disturbances,
for which we assume in the first place that d 2 L1 for
continuous-time systems and d 2 `1 for discrete-time sys-
tems.

The problem we will study is to find a class of disturbances,
say ˝, for which the simultaneous global L1 or `1 and
global asymptotic stabilization problem is solvable, i.e. there
exists a controller u D f .x; t/ possibly nonlinear and dy-
namic such that

(1) in the absence of disturbances, the origin is globally
asymptotically stable;

(2) for d 2 ˝, the states of the closed-loop system remain
bounded for t � 0.

Since the global asymptotic stabilization without distur-
bances is required, it is a classical result that the system
needs to be asymptotically null controllable with bounded
control, i.e.
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(1) .A; B/ is stabilizable;
(2) A has all its eigenvalues in Cs .

Such a system can be decomposed into the following form:"
�xs

�xu

#
D

"
As 0

0 Au

# "
xs

xu

#
C

"
Bs

Bu

#
�.u/ C

"
Es

Eu

#
d;

where As is asymptotically stable, Au has all its eigenvalues
on Cb and .Au; Bu/ is controllable. Since As is stable and
�.�/ and d are bounded, it follows that the xs dynamics will
remain bounded no matter what controller is used. Therefore,
without loss of generality, we can ignore the asymptotically
stable dynamics and assume in (1) that .A; B/ is controllable
and all the eigenvalues of A are on Cb .

Under the above assumption, we consider a linear system
with input saturation and disturbances:

�x D Ax C B�.u/ C Ed; x.0/ D x0 (2)

where .A; B/ is controllable and A has all its eigenvalues on
Cb . Suppose the eigenvalues of A have q different Jordan
block sizes denoted by n1; :::; nq . Without loss of generality,
we can assume x D .x0

1; x0
2; : : : ; x0

q/0, and A, B are in the
following form

A D

26666664
NA1 0 � � � 0

0 NA2

: : :
:::

:::
: : :

: : : 0

0 : : : 0 NAq

37777775 ; B D

2666664
B1

B2

:::

Bq

3777775 ; E D

2666664
E1

E2

:::

Eq

3777775 (3)

where

xi D

2666666664

xi;1

xi;2

:::

xi;ni �1

xi;ni

3777777775
; NAi D

26666666664

Ai I 0 : : : 0

0 Ai I
: : :

:::

:::
: : :

: : :
: : : 0

:::
: : : Ai I

0 � � � � � � 0 Ai

37777777775
�

ni �ni blocks

;

Bi D

2666666664

Bi;1

Bi;2

:::

Bi;ni �1

Bi;ni

3777777775
; Ei D

2666666664

Ei;1

Ei;2

:::

Ei;ni �1

Ei;ni

3777777775
;

(4)

xi;j 2 Rpi with n D
Pq

iD1 ni pi and A0
i C Ai D 0 for

continuous-time systems and A0
i Ai D I for discrete-time

systems. Note that the above form can be obtained by as-
sembling together in the real Jordan canonical form those
blocks corresponding to eigenvalues with the same Jordan
block size.

We say the disturbance d is aligned if Ei;ni
¤ 0 for some

i D 1; : : : ; q and misaligned if Ei;ni
D 0 for all i D

1; : : : ; q.

3 A special class of disturbances

We consider the following class of disturbances as defined
in Wang et al. (2011a):

˝1 D

(
d 2 L1 j 9M > 0; s. t. 8 i 2 1; : : : ; `;

8 t2 > t1 > 0;





Z t2

t1

d.t/ej!i t dt





 � M

)
; (5)

in continuous-time case and

˝1 D

(
d 2 `1 j 9M > 0; s. t. 8i 2 1; : : : ; `;

8t2 � t1 � 0;






 t2X
tDt1

d.t/ej!i t






 � M

)
; (6)

in discrete-time case, where j!i (continuous-time) or ej!i

(discrete-time), i 2 1; : : : ; `, represents the eigenvalues of A.
Here we assume that the system has ` different eigenvalues
(repeated eigenvalues are counted once).

The integral
R t2

t1
d.t/ej!i t dt or summation

Pt2
tDt1

d.t/ej!i t

is easily recognized as the value at !i of the Fourier trans-
form of the signal d.t/ truncated to Œt1; t2�. The definition
of ˝1 implies that this value must be uniformly bounded
regardless of the choice of time interval. In practical terms,
a signal that belongs to ˝1 is a signal that has no sus-
tained frequency component at any of the frequencies !i ,
i 2 1; : : : ; `.

To better motivate the definition of ˝1 and demonstrate its
importance, we recall the following example by Wang et al.
(2011a)"

Px1

Px2

#
D

"
0 1

�1 0

# "
x1

x2

#
C

"
0

1

#
�.u/ C

"
0

1

#
d; (7)

where d.t/ D a sin.t C �/. This system is clearly in the
form of (2), (3) and (4) and d contains a frequency com-
ponent corresponding to the system’s eigenvalues at ˙j . It
was shown that for a relatively large a, states diverge to in-
finity for any initial condition and any controller. A similar
example for discrete-time systems can also be constructed.
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4 Main results

In this section, we shall show that for aligned disturbances
which either belong to ˝1 and/or misaligned disturbances
which belong to L1 or `1, a controller can be designed
such that the states of the closed-loop system remain
bounded for any initial condition, at the same time the ori-
gin in the absence of disturbances is globally asymptotically
stable. Moreover, we shall show that a small aligned distur-
bances which does not belong to ˝1 can also be tolerated.

Without loss of generality, for any critically unstable system
with input saturation and non-input-additive disturbances as
given by (2), (3) and (4), we can equivalently rewrite the
system in the following form

�x D Ax C B�.u/ C NE1d1 C NE2d2 C NE3d3; (8)

with x.0/ D x0. In the above system, d1 is misaligned
and contain arbitrary disturbances that belong to L1

(continuous-time) or `1 (discrete-time), d2 contains all
aligned disturbances belonging to ˝1 and d3 contains
aligned disturbances which do not belong to ˝1 but are
sufficiently small. The system data A and B are given by
(3) and (4). The NE1, NE2 and NE3 are in the form

NE1 D

2666664
NE1;1

:::

NE1;q�1

NE1;q

3777775 ; NE1;i D

2666664
Ei;1

:::

Ei;ni �1

0

3777775 (9)

and

NEj D

2666664
NEj;1

:::

NEj;q�1

NEj;q

3777775 ; NEj;i D

2666664
0

:::

0

E
j
i;ni

3777775 ; j D 2; 3: (10)

Next we shall design a controller which solves the simulta-
neous external and internal stabilization problem. Let .A; B/
satisfy the assumptions made in the preceding section and
P."/ > 0 be the solution to a Continuous Parametric Lya-
punov Equation (CPLE)

A0P."/ C P."/A � P."/BB 0P."/ C "P."/ D 0: (11)

or a Discrete Parametric Lyapunov Equation (DPLE)

.1 � "/P."/ D A0P."/A

� A0P."/B.B 0P."/B C I /�1B 0P."/A: (12)

with " 2 .0; 0:9�. The existence of the positive definite P."/
and its following properties were shown by Zhou et al. (2008,
2009).

(1) P."/ ! 0 as " ! 0;
(2) dP."/

d"
> 0 for " > 0;

(3) P."/ is rational in ".

The special structure of NE1 yields the following crucial tech-
nical lemma.

Lemma 1 Let P."/ be the solution to CPLE (11) or DPLE
(12) associated with A and B given by (3) and (4). For any
matrix NE1 in the form of (9), there exists M such that for
" 2 .0; 1�

NE 0
1P."/ NE1 � M"2I

Proof: See Appendix.

We will construct a low-gain dynamic state feedback con-
troller. The controller as given below has q states that will
transiently replace the evolution of the bottom states of each
Jordan block NAi in generating feedback input into the sys-
tem. (

� Oxi D Ai Oxi C Bi;ni
�.F."a. Nx// Nx/;

u D K.xb � Ox/ C F."a. Nx// Nx;
(13)

for i D 1; : : : ; q where Ox D Œ Ox0
1; Ox2;0 � � � ; Ox0

q�0 and

xb D

2666664
x1;n1

x2;n2

:::

xq;nq

3777775 ; Nx D

2666664
Nx1

:::

Nxq�1

Nxq

3777775 ; Nxi D

2666664
xi;1

:::

xi;ni �1

Oxi

3777775 :

Note that Nx is the system state x with bottom state segment
xi;ni

of each Jordan block NAi replaced by controller states
Oxi . The feedback input is generated based on Nx instead of x.
As will become clear in the proof, the underlying idea be-
hind (13) is that by utilizing the states of controller and the
property of ˝1, we will be able to convert some aligned
disturbances affecting the bottom states into misaligned dis-
turbances which turns out to be less restricted.

The parameter K can be chosen as

K D

(
� OB 0; continuous-timeI

�� OB 0 OA; discrete-time:

where � satisfies 8�B 0B � I and

OB D

2666664
B1;n1

B2;n2

:::

Bq;nq

3777775 ; OA D

26666664
A1 0 � � � 0

0 A2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 Aq

37777775 :

The other feedback gain F."a. Nx// can be designed as fol-
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lows

F."/ D

�
�B 0P."/; (continuous)I
�.B 0P."/B C I /�1B 0P."/A; (discrete)

where P."/ is the solution to CPLE (11) or DPLE (12). The
parameter " is determined by

" D "a. Nx/ WD maxfr 2 .0; 0:9� j

. Nx0P.r/ Nx/ trace.P.r// �
ı2

b
g (14)

where b D 2 trace.BB 0/, ı D
1
4

and P.r/ is the solution of
(11) and (12) with " D r . The scheduling (14) satisfies the
following properties:

(1) There exists an open neighborhood O of the origin such
that for all Nx 2 O, "a. Nx/ D 0:9.

(2) For any Nx 2 Rn, kF."a. Nx// Nxk � ı.
(3) "a. Nx/ ! 0 ” k Nxk ! 1.
(4) For each c > 0, the set f Nx 2 Rn j Nx0P."a. Nx// Nx � cg

is bounded.
(5) For any x1 and x2, x1P."a.x1//x1 � x2P."a.x2//x2 )

"a.x1/ � "a.x2/.

(see Megretski, 1996; Lin, 1998; Hou et al., 1998; Wang
et al., 2011c). The main result of this paper is stated in the
following theorem:

Theorem 1 Consider the system (8) with controller (13).
We have that

(1) in the absence of d1, d2 and d3, the origin is globally
asymptotically stable;

(2) there exists a ı1 > 0 such that the state remains
bounded for any initial condition x0 and disturbances
d1 2 L1, d2 2 ˝1, d3 2 L1.ı1/ (continuous time)
or d1 2 `1, d2 2 ˝1, d3 2 `1.ı1/ (discrete time).

Proof: We shall only prove the results for continuous-time
systems. The discrete-time counterpart can be shown using
a very similar argument. For continuous-time system, define

Qx D xb � Ox D

2666664
x1;n1

� Ox1

x2;n2
� Ox2

:::

xq;nq
� Oxq

3777775 :

We have that

PQx D OA Qx C OB�.� OB 0
Qx � B 0P."a. Nx// Nx/

� OB�.�B 0P."a. Nx// Nx/ C OE2d2 C OE3d3;

where

OEj D

2666664
E

j
1;n1

E
j
2;n2

:::

E
j
q;nq

3777775 ; j D 2; 3: (15)

OE2d2 and OE3d3 contain all the aligned disturbances that
affect the bottom states of each Jordan block NAi . Note that
.A; B/ is controllable implies that . OA; OB/ is controllable.
Moreover, OAC OA0 D 0. To simplify our presentation, we will
denote P."a. Nx// by P since the dependency on the scaling
parameter should be clear from the context. The closed-loop
system can be written in terms of Qx; Nx as8̂̂̂̂

<̂̂
ˆ̂̂̂:

PNx D A Nx C B�.�B 0P Nx/ C NE1d1 C I Qx

C NB
h
�.� OB 0 Qx � B 0P Nx/ � �.�B 0P Nx/

i
PQx D OA Qx C OB�.� OB 0 Qx � B 0P Nx/

� OB�.�B 0P Nx/ C OE2d2 C OE3d3;

(16)

where NB is the same as B in (3) and (4) with Bi;ni
blocks

set to zero and

I D

2666664
I1

I2

:::

Iq

3777775 ; Ii D

2666666664

0

:::

0

NIi

0

3777777775
; NIi D Œ0 � � � I

"

i th block

� � � 0�

It should be noted that NB , NE1 and I are all in the form
of (9). We first prove global asymptotic stability without
disturbances. Consider the dynamics of Qx. Let v D �B 0P Nx.
Our scheduling (14) guarantees that kvk � ı �

1
2

for any
Nx. Then,

PQx D OA Qx C OB�.� OB 0
Qx C v/ � OB�.v/:

and define a Lyapunov function as V1 D Qx0 Qx. Differentiating
V1 along the trajectories yields

PV1 D 2 Qx0 OBŒ�.� OB 0
Qx C v/ � �.v/�:

Since kvk �
1
2

, (18) yields that

PV1 � � Qx0 OB�. OB 0
Qx/:

Since Qx has a bounded derivative, by Barbalat’s Lemma,
this yields that limt!1

OB 0 Qx.t/ D 0 which implies that there
exists T0 such that we have k OB 0 Qx.t/k �

1
2

for t � T0 and
hence

PQx D . OA � OB OB 0/ Qx
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and since this system matrix is Hurwitz stable, we have
Qx.t/ ! 0 as t ! 1. For t > T0, we have that

PNx D A Nx C B�.�B 0P Nx/ C NI Qx

where NI D I � NB OB 0. Define V2 D Nx0P Nx and a set

K D

n
Nx j V2. Nx/ �

ı2

b trace.P.0:9//

o
:

It can be easily seen from (14) that for Nx 2 K , "a. Nx/ D 0:9.
Next, consider the derivative of V2,

PV2 D �"V2 � Qx0PBB 0P Qx C 2 Nx0P NI Qx C Nx0 dP
dt

Nx

� �"V2 C 2 Nx0P NI Qx C Nx0 dP
dt

Nx

� �"V2 C 2
p

V2kP 1=2 NI Qxk C Nx0 dP
dt

Nx:

Note that I, NB and hence NI are in the form of (9). Lemma
1 shows that there exists an M such that

kP 1=2 NI Qxk D

p
Qx0 NI0P NI Qx � "

p
M k Qxk:

We use here that Lemma 1 holds for any matrix of the form
(9) so it also holds for NE1 replaced by NI. Hence

PV2 � �"V2 C 2"
p

M k Qxk
p

V2 C Nx0 dP
dt

Nx

� �"
p

V2

hp
V2 � 2

p
M k Qxk

i
C Nx0 dP

dt
Nx:

Since Qx ! 0, there exists a T1 > T0 such that for t � T1,

k Qxk �
ı

4
p

M
p

b trace.P.0:9//
:

Therefore, for t � T1 and Nx … K we havep
V2 � 2

p
M k Qxk �

p
V2

2

and thus
PV2 � �

"
2
V2 C Nx0 dP

dt
Nx:

Since PV2 cannot have the same sign as Nx0 dP
dt

Nx (see Hou et al.
(1998)), we conclude that PV2 < 0 for Nx … K and t > T1.
This implies that Nx will enter K within finite time, say
T2 > T1, and remain in K thereafter. For t > T2 and Nx 2 K ,
we have "a. Nx/ D 0:9 and k OB 0 Qxk �

1
2

. All saturations are
inactive and the system becomes(

PNx D .A � BB 0P.0:9// Nx C NI Qx;

PQx D . OA � OB OB 0/ Qx:

The global asymptotic stability follows from the properties
that OA � OB OB 0 and A � BB 0P.0:9/ are Hurwitz stable. We
proceed to show the boundedness of trajectories in presence
of d1 and d2. Define

R D e
OA0t and y D R Qx:

Note that since OA C OA0 D 0, R defines a rotation matrix.
Moreover, we have that PR D �R OA. We obtain that

Py D R OB�.� OB 0R0y C v/ � R OB�.v/ C R OE2d2 C R OE3d3

with y.0/ D Qx0 where v D �B 0P Nx. Let Ny satisfy

PNy D R OE2d2; Ny.0/ D Qx0:

Since d2 2 ˝1, we find that Ny 2 L1 (see Wang et al.,
2011a). Define Qy D y � Ny. Then

PQy D R OB�.� OB 0R0
Qy � OB 0R0

Ny C v/ � R OB�.v/ C R OE3d3

with Qy.0/ D 0. Again define z D R0 Qy. We get

Pz D OAzC OB�.� OB 0z� OB 0R0
NyCv/� OB�.v/C OE3d3; z.0/ D 0;

Consider an auxiliary system

Pw D . OA C OB OF /w C OE3d3; w.0/ D 0;

where OF is such that OA C OB OF is Hurwitz stable. For a
selected OF , let ı1 be sufficiently small such that kd3kL1

�

ı1 implies that k OF wkL1
� 1=4.

Let � D z � w. We have that

P� D OA� C OB�.� OB 0� C u/ � OB�.v/ � OB OF w; �.0/ D 0;

where u D � OB 0w� OB 0R0 Ny Cv. Since u 2 L1 and k�.v/C

OF wkL1
� 1=4 C 1=4 D 1=2, it follows from Lemma 3 in

the appendix that � 2 L1. This implies that Qx 2 L1.

Consider the dynamics of Nx

PNx D A Nx C B�.�B 0P Nx/ C NB� C NE1d1 C I Qx

where � D �.� OB 0 Qx � B 0P Nx/ � �.�B 0P Nx/. Since �.�/ is
globally Lipschitz with Lipschitz constant 1, we have that
k�k � k OB 0 Qxk and thus � 2 L1.

By differentiating V2 D Nx0P Nx, we obtain

PV2 � �"V2 C 2x0P NE1d1 C 2x0P I Qx C 2 Nx0P NB� C Nx0 dP
dt

Nx

� �"V2 C 2
p

V2kP 1=2 NE1d1k C 2
p

V2kP 1=2 NB�k

C 2
p

V2kP 1=2I Qxk C Nx0 dP
dt

Nx:

We have already shown in Lemma 1 that there exist M1,
M2 and M3 such that

kP 1=2 NE1d1k � "
p

M1kd1k; kP 1=2 NB�k � "
p

M2k�k

and kP 1=2I Qxk � "
p

M3k Qxk:
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We obtain,

PV2 � �"
p

V2

hp
V 2 � 2

p
M1kd1k1 � 2

p
M3k Qxk1

� 2
p

M2k�k1

i
C Nx0 dP

dt
Nx:

If
p

V2 � 2
p

M1kd1k1 C2
p

M3k Qxk1 C2
p

M2k�k1, we
have

PV2 � Nx0 dP
dt

Nx:

Since PV2 and Nx0 dP
dt

Nx can not have the same sign, we find
that PV2 � 0 for

Nx 2

n
Nx j

p
V2 � 2

p
M1kd1k1 C 2

p
M3k Qxk1

C 2
p

M2k�k1

o
;

which, from the property (4) of scheduling (14), implies that
Nx 2 L1 and hence x 2 L1.

5 Computational issues

The proposed controller design relies on scheduling of the
parameter "a. Nx/ which is a convex optimization problem but
requires online solving CPLE (11) or DPLE (12) and can
be computationally demanding for large systems. However,
compared with normal Riccati equation, (11) and (12) still
have some numerical merit, for example the solution P."/
is a rational matrix in general (see Zhou et al., 2008, 2009).
Moreover, in a special case where the system has a single
input, P."/ is a polynomial matrix and can be solved easily
and explicitly in a finite recursion. In such a case, "a. Nx/ is
not difficult to obtain.

Appendix

We shall need the following bounds from Shi et al. (2003):

Lemma 2 For two vectors s; t 2 Rm, the following state-
ments hold:

js0Œ�.s C t / � �.s/�j � 2
p

mktk; (17)

2s0Œ�.t/ � �.t � s/� � s0�.s/; ktk �
1
2
; (18)

ks � �.s/k � s0�.s/: (19)

The following lemma is a core result for neutrally stable
systems:

Lemma 3 Suppose .A; B/ is controllable and A0 C A D 0
for continuous-time systems and A0A D I for discrete-time
systems. Consider the system

�x D Ax C B�.Kx C v1/ C Bv2; x.0/ D x0

where

K D

�
�B 0; continuous-timeI

��B 0A; discrete-time:

and � satisfies 8�B 0B � I . We have

(1) In absence of v1 and v2, the origin is globally asymp-
totically stable;

(2) x 2 L1 for any initial condition and for v1 2 L1,
v2 2 L1.1=2/ (continuous time) or v1 2 `1, v2 2

`1.1=2/ (discrete time).

Proof: The result for continuous-time systems can be found
in Liu et al. (1996, Lemma 2) and Yakoubi & Chitour (2006,
Proposition 1). The discrete-time counterpart was proved by
Wang et al. (2011a).

Proof of Lemma 1: We only prove the result for the
continuous-time case. The corresponding discrete-time re-
sult follows from exactly the same argument. It is shown in
(Zhou et al., 2008) that P.0/ D 0 and P."/ is rational in ".
Therefore, we can write

P."/ D "P1 C "2P2 C : : : C "i Pi C : : : :

Substituting P."/ in (11), we find P1 satisfies that

P1A C A0P1 D 0; (20)

where A is given by (3). Consider the diagonal block of P1,
say P1;i , corresponding to NAi block. P1;i must satisfy

NA0
i P1;i C P1;i

NAi D 0 (21)

where NAi is given by (4). Suppose

P1;i D

"
NP11

NP 0
12

NP12
NP22

#

where NP11 2 Rpi �pi , NP12 and NP22 are of appropriate di-
mension. Define

�i;j D

h
x0

i;j 0 � � � 0

i0

:

where the eigenvectors of Ai are xi;j with associated eigen-
values �j , j D 1; : : : ; pi . Clearly we have NAi �i;j D �j �i;j

and thus �i;j is an eigenvector of NAi . Note that NAi has pi

linearly independent eigenvectors. We shall have that

. NA0
i P1;i C NP1;i

NAi /�i;j D 0:

This implies that

NA0
i P1;i �i;j D ��j P1;i �i;j :

In other words, P1;i �i;j is an eigenvector of NA0
i associated

with eigenvalue ��j for j D 1; : : : ; pi . On the other hand,
we have a set of eigenvectors of NA0 in the form of

�i;j D

h
0 � � � 0 v0

i;j

i0

; i D 1; : : : ; pi
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where vi;j are the eigenvectors of A0
i associated with eigen-

value �j . Note that NA0
i also has only pi linearly independent

eigenvectors. Therefore,

P1�i;j D

"
NP11xi

NP12xi

#
2 spanf�i;1; : : : ; �i;pi

g:

This implies that NP11xi;j D 0, j D 1; : : : ; pi . Since xi;j

forms a basis of Rpi , we must have that NP11 D 0 and hence
NP12 D 0 due to the fact that P1;i is positive semi-definite.

Recursively, applying the above argument to NP22, we shall
eventually find that

P1;i D

26666664
0 0 : : : 0

0
: : :

: : :
:::

:::
: : : 0 0

0 � � � 0 NPni ni

37777775 :

Since P1 is positive semi-definite, we note that for any given
matrix NE1 in the form of (9), we must have P1

NE1 D 0. This
implies that NE 0

1P."/ NE1 must be of order "2.
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